Home > Seminars > Nosang V. Myung: High Density Chemical Sensor Arrays

Nosang V. Myung: High Density Chemical Sensor Arrays

Start:

7/9/2018 at 10:00AM

End:

7/9/2018 at 11:00AM

Location:

136 DeBartolo Hall

Host:

College of Engineering close button
headerbottom

Edward Maginn

Edward Maginn

VIEW FULL PROFILE Email: ed@nd.edu
Phone: 574-631-5687
Website: http://www.nd.edu/~ed/
Office: 250 Nieuwland Hall

Affiliations

Department of Chemical and Biomolecular Engineering Keough-Hesburgh Chair of Engineering
College of Engineering Keough-Hesburgh Chair of Engineering
The research in our group focuses on developing a fundamental understanding of the link between the physical properties of materials and their chemical constitution. Much of our work is devoted to applications related to energy and the environment. The main tool we use is molecular simulation. In ...
Click for more information about Edward
574-631-5687
Add to calendar:
iCal vCal

Electronic detection of molecules is rapidly emerging as an alternative to traditional optical and electrochemical methods because of the small size, low-power consumption, improved sensing performance and, most of all, the possibility of developing high density arrays for simultaneous analyses of multiple species in small sample volumes. Recently, one-dimensional nanostructures (e.g., carbon nanotubes (CNTs), inorganic, and organic nanowires) as conduction channels of field effect transistors (FETs) have been developed for detection of a variety of gaseous and biological molecules with excellent low detection limit, sensitivity, and selectivity. These features are a consequence of dramatic decrease in characteristic length and increase in the ratio of surface-to-volume atoms, allowing for rapid diffusion into the bulk and for a more significant fraction of the atoms to participate in surface processes such as chemical and biochemical binding interactions. One-dimensional geometries also enhance response times by virtue of their two-dimensional mass transfer profile. Furthermore, nanowires are heralded for device miniaturization and sensor arrays, enabling duplicate elements to reduce false positives/negatives and pattern recognition systems termed electronic noses/tongues where each sensor in the array has a unique response to every analyte creating a fingerprint type response that increases sensitivity and selectivity. Finally, sensors are also attractive for their proven commercial viability, as this approach uses a single material behaving as both the sensitive layer and transducer to directly convert chemical information into an electronic signal without the need for labels, allowing for real-time, continuous monitoring. 

In this presentation, synthesis, functionalization, and assembly of various nanoengineered material nanowires will be discussed to create “true” high density gaseous sensor arrays with superior sensing performance in a cost-effective manner. Finally, an Android based smartphone integratable sensor will be demonstrated.

Seminar Speaker:

Nosang V. Myung

Nosang V. Myung

University of California, Riverside

Professor Nosang Vincent Myung received his B.S. M.S. and Ph. D. Degree in Chemical Engineering from the University of California, Los Angeles in 1994, 1997, and 1998, respectively. He spent three years as a research engineer at the same institution. In 2001-2003, he joined micro electromechanical systems (MEMS) group at Jet Propulsion Laboratory (JPL) which is one of NASA center as a member of engineering staff and in 2003, he joined Department of Chemical and Environmental Engineering at University of California, Riverside and served as the Department Chair from 2011-2017.

Currently, he is the founding director for UC-KIMS Center for Innovative Materials for Energy and Environment and co-director for Winston Chung Global Energy Center. During his career, he received a few awards including ECS Electrodeposition Division Research Award, KIChE President Award, Brainpool Fellow from Korean Government, University of California Regent Fellowship, Jet Propulsion Laboratory Spot Award, Abner Brenner gold medal award from American Electroplaters and Surface Finishers Society (AESF), First time author’s award from Plating and Surface Finishing, National Science Foundation graduate fellowship, Department of Education fellowship, American Electroplating and Surface Finishing summer scholarship, Hughes aircraft company scholarship.

Dr. Myung’s research interests are focused on the synthesis of nanoengineered materials and apply these materials in various advanced applications including spintronics, sensors, electronics, optoelectronics, energy harvesting, and environmental remediation. Dr. Myung’s group objective is to control nanoscale sized features to enhance material properties and device functions beyond those that we currently know. He hashadover 200 peer-reviewed journal papers published and his h-index is 53 with the total citation of over 10,000.

« August 2020 »
August
SuMoTuWeThFrSa
1
2345678
9101112131415
16171819202122
23242526272829
3031